Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transactivator (CIITA) mediates MHC II induction by interferon gamma (IFN-γ). CIITA activity can be fine-tuned at the post-translational level, but the mechanisms are not fully appreciated. We investigated the role of protein arginine methyltransferase 1 (PRMT1) in this process. We report here that CIITA interacted with PRMT1. IFN-γ treatment down-regulated PRMT1 expression and attenuated PRMT1 binding on the MHC II promoter. Over-expression of PRMT1 repressed MHC II promoter activity while PRMT1 depletion enhanced MHC II transactivation. Mechanistically, PRMT1 methylated CIITA and promoted CIITA degradation. Therefore, our data reveal a previously unrecognized role for PRMT1 in suppressing CIITA-mediated MHC II transactivation.