Introduction: DNA methylation is a key epigenetic mechanism in brain aging and Alzheimer's disease (AD). The newly discovered 5-hydroxymethylcytosine mediates DNA demethylation, is highly abundant in the brain, and is dynamically regulated by life experiences. However, little is known about its genome-wide patterns and potential role in AD.
Methods: Using a genome-wide capture followed by high-throughput sequencing, we studied the genome-wide distribution of 5-hydroxymethylcytosine at specific genomic loci in human AD brain and identified differentially hydroxymethylated regions (DhMRs) associated with AD pathology.
Results: We identified 517 DhMRs significantly associated with neuritic plaques and 60 DhMRs associated with neurofibrillary tangles. DNA hydroxymethylation in gene bodies was predominantly positively correlated with cis-acting gene expression. Moreover, genes showing differential hydroxymethylation were significantly enriched in neurobiological processes and clustered in functional gene ontology categories.
Discussion: Our results reveal a critical role of DNA hydroxymethylation in AD pathology and provide mechanistic insight into the molecular mechanisms underlying AD.
Keywords: Alzheimer's disease; DNA hydroxymethylation; Epigenetics; Genome-wide association; Postmortem brain.
Copyright © 2016 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.