PhotoGate microscopy to track single molecules in crowded environments

Nat Commun. 2017 Jan 10:8:13978. doi: 10.1038/ncomms13978.

Abstract

Tracking single molecules inside cells reveals the dynamics of biological processes, including receptor trafficking, signalling and cargo transport. However, individual molecules often cannot be resolved inside cells due to their high density. Here we develop the PhotoGate technique that controls the number of fluorescent particles in a region of interest by repeatedly photobleaching its boundary. PhotoGate bypasses the requirement of photoactivation to track single particles at surface densities two orders of magnitude greater than the single-molecule detection limit. Using this method, we observe ligand-induced dimerization of a receptor tyrosine kinase at the cell surface and directly measure binding and dissociation of signalling molecules from early endosomes in a dense cytoplasm with single-molecule resolution. We additionally develop a numerical simulation suite for rapid quantitative optimization of Photogate experimental conditions. PhotoGate yields longer tracking times and more accurate measurements of complex stoichiometry than existing single-molecule imaging methods.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptor Proteins, Signal Transducing / analysis
  • Adaptor Proteins, Signal Transducing / genetics
  • Adaptor Proteins, Signal Transducing / metabolism
  • Animals
  • COS Cells
  • Cell Membrane / metabolism
  • Chlorocebus aethiops
  • Computer Simulation
  • Endosomes / metabolism
  • ErbB Receptors / analysis
  • ErbB Receptors / genetics
  • ErbB Receptors / metabolism
  • Green Fluorescent Proteins / analysis
  • Green Fluorescent Proteins / genetics
  • Green Fluorescent Proteins / metabolism
  • Lasers
  • Microscopy, Fluorescence / methods*
  • Molecular Biology / instrumentation
  • Molecular Biology / methods*
  • Molecular Imaging / instrumentation
  • Molecular Imaging / methods*
  • Photobleaching
  • Protein Multimerization

Substances

  • APPL1 protein, human
  • Adaptor Proteins, Signal Transducing
  • Green Fluorescent Proteins
  • EGFR protein, human
  • ErbB Receptors