Background: Immunometabolic dysregulation (low-grade inflammation and metabolic dysregulation) has been associated with the onset and more severe course of multiple psychiatric disorders, partly due to neuroanatomical changes and impaired neuroplasticity. We examined the effect of multiple markers of immunometabolic dysregulation on hippocampal and amygdala volume and anterior cingulate cortex thickness in a large sample of patients with depression and/or anxiety and healthy subjects (N=283).
Methods: Interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-a), c-reactive protein (CRP), triglyceride levels and HDL-cholesterol and genomic profile risk scores (GPRS) for immunometabolic dysregulation were determined in peripheral blood and T1 MRI scans were acquired at 3T. Regional brain volume and cortical thickness was assessed using FreeSurfer. Covariate-adjusted linear regression analyses were performed to examine the relationship between immunometabolic dysregulation and brain volume/thickness across all subjects.
Results: Multiple immunometabolic dysregulation markers (i.e. triglyceride levels and inflammation) were associated with lower rostral ACC thickness across all subjects. IL-6 was inversely associated with hippocampal and amygdala volume in healthy subjects only. GPRS for immunometabolic dysregulation were not associated with brain volume or cortical thickness.
Conclusions: Multiple serum, but not genetic immunometabolic dysregulation markers were found to relate to rostral ACC structure, suggesting that inflammation and metabolic dysregulation may impact the ACC through similar mechanisms.
Keywords: Body mass index; Brain volume; Immunometabolic dysregulation; Inflammation; Polygenic risk scores.
Copyright © 2016 Elsevier Inc. All rights reserved.