In this study, a magnetic iron oxide nanoparticle-based solid-phase extraction procedure combined with the online concentration and separation of salicylic acid (SA) through micellar electrokinetic chromatography-UV detection (MEKC-UV) was developed. Under optimal experimental conditions, a good linearity in the range of 0.01-100μmolL-1 was obtained with a coefficient of correlation of 0.9999. The detection sensitivity of the proposed method exhibited an approximately 1026-fold improvement compared with a single MEKC method without online concentration, and the detection limit (S/N=3) was 3.80nmolL-1. The repeatability of the method was evaluated using intraday and interday RSDs (11.5% and 17.0%, respectively). The method was used to determine SA concentrations in tobacco leaves (Nicotiana tabacum L. cv. Samsun) from the NN genotype, nn genotype, and Nt-NahG mutant strains, as well as in shampoo and ointment samples. Rapid extraction and separation (<50min), acceptable repeatability (RSD<17.0%), and high spiked recoveries (95.8%-102.4%) were observed for plants, detergents, and pharmaceuticals.
Keywords: Magnetic iron oxide nanoparticles; Micellar electrokinetic chromatography; Online concentration; Salicylic acid; Solid-phase extraction.
Copyright © 2016 Elsevier B.V. All rights reserved.