Successful pregnancy relies on the accurate regulation of the maternal-fetal immune system. Without enough tolerance in the uterine microenvironment, the mother and the hemiallogeneic fetus could not peacefully coexist. T cell immunoglobulin and mucin domain (Tim)-3 is a molecule originally regarded as to be expressed on terminally differentiated IFN-γ expressing CD4+ T cells (Th1). The engagement of Tim-3 with its ligand, galectin-9 (Gal-9) could induce the exhaustion or apoptosis of effector T cells, and thus might regulate the tolerance. Tim-3 pathway also participates in regulating the activities of CD4+ regulatory T cells, monocyte-macrophages, dendritic cells and natural killer cells. Dysregulation of Tim-3 expression can elicit excessive or inhibited inflammatory responses and ultimately result in autoimmune diseases, viral or tumor evasion and pregnancy complications. In this review, we will mainly focus on the expression of Tim-3 on local immune cells and its function in pregnancy. In addition, meaningful questions that need further investigation and the potential roles of Tim-3 in fetal tolerance will be discussed. Deeper understanding of the immune checkpoint receptor Tim-3 will shed new light on exploring the pathogenesis of some pregnancy complications, including pre-eclampsia, intrauterine growth restriction, recurrent spontaneous abortion and preterm birth. Tim-3 pathway might be a new target of immune therapy for pregnancy complications in the future.
Keywords: Immunoregulation; Maternal-fetal interface; Pregnancy; Tim-3.
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.