Many questions in life course epidemiology involve mediation and/or interaction because of the long latency period between exposures and outcomes. In this paper, we explore how mediation analysis (based on counterfactual theory and implemented using conventional regression approaches) links with a structured approach to selecting life course hypotheses. Using theory and simulated data, we show how the alternative life course hypotheses assessed in the structured life course approach correspond to different combinations of mediation and interaction parameters. For example, an early life critical period model corresponds to a direct effect of the early life exposure, but no indirect effect via the mediator and no interaction between the early life exposure and the mediator. We also compare these methods using an illustrative real-data example using data on parental occupational social class (early life exposure), own adult occupational social class (mediator) and physical capability (outcome).
© The Author 2016. Published by Oxford University Press on behalf of the International Epidemiological Association.