Exhaled breath contains thousands of volatile organic compounds that reflect the metabolic process occurring in the host both locally in the airways and systemically. They also arise from the environment and airway microbiome. Comprehensive analysis of breath volatile organic compounds (breathomics) provides opportunities for noninvasive biomarker discovery and novel mechanistic insights. Applications in patients with obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease, include not only diagnostics (especially in children and other challenging diagnostic areas) but also identification of clinical treatable traits, such as airway eosinophilia and risk of infection/exacerbation, that are not specific to diagnostic labels. Although many aspects of breath sampling and analysis are challenging, proof-of-concept studies with mass spectrometry and electronic nose technologies have provided independent studies with moderate-to-good diagnostic and phenotypic accuracies. The present review evaluates the data obtained by using breathomics in (1) predicting the inception of asthma or chronic obstructive pulmonary disease, (2) inflammatory phenotyping, (3) exacerbation prediction, and (4) treatment stratification. The current findings merit the current efforts of large multicenter studies using standardized sampling, shared analytic methods, and databases, including external validation cohorts. This will position this noninvasive technology in the clinical assessment and monitoring of chronic airways diseases.
Keywords: Asthma; Breathomics; breath analysis; chronic obstructive pulmonary disease; volatile organic compounds.
Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.