An Integrated Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling

Cancer Cell. 2016 Sep 12;30(3):485-498. doi: 10.1016/j.ccell.2016.06.024. Epub 2016 Aug 11.

Abstract

The complex biochemical effects of RAF inhibitors account for both the effectiveness and mechanisms of resistance to these drugs, but a unified mechanistic model has been lacking. Here we show that RAF inhibitors exert their effects via two distinct allosteric mechanisms. Drug resistance due to dimerization is determined by the position of the αC helix stabilized by inhibitor, whereas inhibitor-induced RAF priming and dimerization are the result of inhibitor-induced formation of the RAF/RAS-GTP complex. The biochemical effect of RAF inhibitor in cells is the combined outcome of the two mechanisms. Therapeutic strategies including αC-helix-IN inhibitors are more effective in multiple mutant BRAF-driven tumor models, including colorectal and thyroid BRAF(V600E) cancers, in which first-generation RAF inhibitors have been ineffective.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cell Line, Tumor
  • HEK293 Cells
  • Humans
  • Mice
  • Protein Kinase Inhibitors / pharmacology*
  • Proto-Oncogene Proteins B-raf / antagonists & inhibitors*
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins B-raf / metabolism
  • Signal Transduction / drug effects

Substances

  • Protein Kinase Inhibitors
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf