Bayesian network feature finder (BANFF): an R package for gene network feature selection

Bioinformatics. 2016 Dec 1;32(23):3685-3687. doi: 10.1093/bioinformatics/btw522. Epub 2016 Aug 8.

Abstract

Motivation: Network marker selection on genome-scale networks plays an important role in the understanding of biological mechanisms and disease pathologies. Recently, a Bayesian nonparametric mixture model has been developed and successfully applied for selecting genes and gene sub-networks. Hence, extending this method to a unified approach for network-based feature selection on general large-scale networks and creating an easy-to-use software package is on demand.

Results: We extended the method and developed an R package, the Bayesian network feature finder (BANFF), providing a package of posterior inference, model comparison and graphical illustration of model fitting. The model was extended to a more general form, and a parallel computing algorithm for the Markov chain Monte Carlo -based posterior inference and an expectation maximization-based algorithm for posterior approximation were added. Based on simulation studies, we demonstrate the use of BANFF on analyzing gene expression on a protein-protein interaction network.

Availability: https://cran.r-project.org/web/packages/BANFF/index.html CONTACT: jiankang@umich.edu, tianwei.yu@emory.eduSupplementary information: Supplementary data are available at Bioinformatics online.

MeSH terms

  • Algorithms
  • Bayes Theorem*
  • Computational Biology / methods*
  • Gene Regulatory Networks*
  • Humans
  • Markov Chains
  • Software*