Motivation: Network marker selection on genome-scale networks plays an important role in the understanding of biological mechanisms and disease pathologies. Recently, a Bayesian nonparametric mixture model has been developed and successfully applied for selecting genes and gene sub-networks. Hence, extending this method to a unified approach for network-based feature selection on general large-scale networks and creating an easy-to-use software package is on demand.
Results: We extended the method and developed an R package, the Bayesian network feature finder (BANFF), providing a package of posterior inference, model comparison and graphical illustration of model fitting. The model was extended to a more general form, and a parallel computing algorithm for the Markov chain Monte Carlo -based posterior inference and an expectation maximization-based algorithm for posterior approximation were added. Based on simulation studies, we demonstrate the use of BANFF on analyzing gene expression on a protein-protein interaction network.
Availability: https://cran.r-project.org/web/packages/BANFF/index.html CONTACT: jiankang@umich.edu, tianwei.yu@emory.eduSupplementary information: Supplementary data are available at Bioinformatics online.
© The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.