Objectives: To evaluate the effect of silane application and silane heat treatment on lithium-disilicate ceramic when bonded to composite resin.
Methods: Twelve blocks of lithium-disilicate (LD) ceramic were fabricated and bonding surfaces were etched using 9.5% hydrofluoric acid (90 seconds). Three experimental groups resulted from the various surface treatment combinations, which included, no silane application (NS) (controls), silane application (S) and silane heat treatment (HS) (100°C for 5 minutesutes). Ceramic and composite resin blocks were bonded using an adhesive resin and light cured restorative composite as a luting agent, under standard conditions. A total of 90 specimen sticks (8 x 1mm²) were subjected to micro-tensile bond strength testing. The means of micro-tensile bond strength (µ-tbs) of the study groups were analyzed using t-test and ANOVA. The tested specimens were analyzed for mode of failure using scanning electron microscopy (SEM).
Results: The highest µ-tbs value (42.6 ±3.70 MPa) was achieved for LD ceramics with heat-dried silane. Both silane application and heat treatment of silane resulted in significant (p<0.05) improvements in micro-tensile bond strength of LD ceramics when bonded to resin composite.
Conclusions: The application of silane and its heat treatment showed significant improvement in bond strength of lithium disilicate ceramic when bonded to composite.
Keywords: Lithium disilicate; Microtensile bond strength; Silane; Silane heat treatment.