Alternative splicing acting as a bridge in evolution

Stem Cell Investig. 2015 Oct 30:2:19. doi: 10.3978/j.issn.2306-9759.2015.10.01. eCollection 2015.

Abstract

Background: Alternative splicing (AS) regulates diverse cellular and developmental functions through alternative protein structures of different isoforms. Alternative exons dominate AS in vertebrates; however, very little is known about the extent and function of AS in lower eukaryotes. To understand the role of introns in gene evolution, we examined AS from a green algal and five fungal genomes using a novel EST-based gene-modeling algorithm (COMBEST).

Methods: AS from each genome was classified with COMBEST that maps EST sequences to genomes to build gene models. Various aspects of AS were analyzed through statistical methods. The interplay of intron 3n length, phase, coding property, and intron retention (RI) were examined with Chi-square testing.

Results: With 3 to 834 times EST coverage, we identified up to 73% of AS in intron-containing genes and found preponderance of RI among 11 types of AS. The number of exons, expression level, and maximum intron length correlated with number of AS per gene (NAG), and intron-rich genes suppressed AS. Genes with AS were more ancient, and AS was conserved among fungal genomes. Among stopless introns, non-retained introns (NRI) avoided, but major RI preferred 3n length. In contrast, stop-containing introns showed uniform distribution among 3n, 3n+1, and 3n+2 lengths. We found a clue to the intron phase enigma: it was the coding function of introns involved in AS that dictates the intron phase bias.

Conclusions: Majority of AS is non-functional, and the extent of AS is suppressed for intron-rich genes. RI through 3n length, stop codon, and phase bias bridges the transition from functionless to functional alternative isoforms.

Keywords: Alternative splicing (AS); fungal genome; intron retention (RI).