The Conserved Tetratricopeptide Repeat-Containing C-Terminal Domain of Pseudomonas aeruginosa FimV Is Required for Its Cyclic AMP-Dependent and -Independent Functions

J Bacteriol. 2016 Jul 28;198(16):2263-74. doi: 10.1128/JB.00322-16. Print 2016 Aug 15.

Abstract

FimV is a Pseudomonas aeruginosa inner membrane protein that regulates intracellular cyclic AMP (cAMP) levels-and thus type IV pilus (T4P)-mediated twitching motility and type II secretion (T2S)-by activating the adenylate cyclase CyaB. Its cytoplasmic domain contains three predicted tetratricopeptide repeat (TPR) motifs separated by an unstructured region: two proximal to the inner membrane and one within the "FimV C-terminal domain," which is highly conserved across diverse homologs. Here, we present the crystal structure of the FimV C terminus, FimV861-919, containing a TPR motif decorated with solvent-exposed, charged side chains, plus a C-terminal capping helix. FimV689, a truncated form lacking this C-terminal motif, did not restore wild-type levels of twitching or surface piliation compared to the full-length protein. FimV689 failed to restore wild-type levels of the T4P motor ATPase PilU or T2S, suggesting that it was unable to activate cAMP synthesis. Bacterial two-hybrid analysis showed that TPR3 interacts directly with the CyaB activator, FimL. However, FimV689 failed to restore wild-type motility in a fimV mutant expressing a constitutively active CyaB (fimV cyaB-R456L), suggesting that the C-terminal motif is also involved in cAMP-independent functions of FimV. The data show that the highly conserved TPR-containing C-terminal domain of FimV is critical for its cAMP-dependent and -independent functions.

Importance: FimV is important for twitching motility and cAMP-dependent virulence gene expression in P. aeruginosa FimV homologs have been identified in several human pathogens, and their functions are not limited to T4P expression. The C terminus of FimV is remarkably conserved among otherwise very diverse family members, but its role is unknown. We provide here biological evidence for the importance of the C-terminal domain in both cAMP-dependent (through FimL) and -independent functions of FimV. We present X-ray crystal structures of the conserved C-terminal domain and identify a consensus sequence for the C-terminal TPR within the conserved domain. Our data extend our knowledge of FimV's functionally important domains, and the structures and consensus sequences provide a foundation for studies of FimV and its homologs.

MeSH terms

  • Amino Acid Sequence
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Conserved Sequence / physiology*
  • Crystallography, X-Ray
  • Cyclic AMP / genetics
  • Cyclic AMP / metabolism*
  • Gene Expression Regulation, Bacterial / physiology
  • Models, Molecular
  • Phylogeny
  • Protein Conformation
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / metabolism*
  • Type II Secretion Systems

Substances

  • Bacterial Proteins
  • Type II Secretion Systems
  • Cyclic AMP