Primary and acquired drug resistance is one of the main obstacles encountered in high-grade serous ovarian cancer (HGSC) chemotherapy. Cisplatin induces DNA damage through cross-linking and long integrated non-coding RNAs (lincRNAs) play an important role in chemical induced DNA-damage response, which suggests that lincRNAs may be also associated with cisplatin resistance. However, the mechanism of long integrated non-coding RNAs (lincRNAs) acting on cisplatin resistance is not well understood. Here, we showed that expression of lin-RECK-3, H19, LUCAT1, LINC00961, and linc-CARS2-2 was enhanced in cisplatin-resistant A2780-DR cells, while transcriptome sequencing showed decreased Linc-TNFRSF19-1 and LINC00515 expression. Additionally, we verified that different H19 expression levels in HGSC tissues showed strong correlation with cancer recurrence. H19 knockdown in A2780-DR cells resulted in recovery of cisplatin sensitivity in vitro and in vivo. Quantitative proteomics analysis indicated that six NRF2-targeted proteins, including NQO1, GSR, G6PD, GCLC, GCLM and GSTP1 involved in the glutathione metabolism pathway, were reduced in H19-knockdown cells. Furthermore, H19-knockdown cells were markedly more sensitive to hydrogen-peroxide treatment and exhibited lower glutathione levels. Our results reveal a previously unknown link between H19 and glutathione metabolism in the regulation of cancer-drug resistance.