New Horizons for Perovskite Solar Cells Employing DNA-CTMA as the Hole-Transporting Material

ChemSusChem. 2016 Jul 7;9(13):1736-42. doi: 10.1002/cssc.201600288. Epub 2016 May 11.

Abstract

We investigate solution-processed low-temperature lead-halide perovskite solar cells employing deoxyribose nucleic acid (DNA)-hexadecyl trimethyl ammonium chloride (CTMA) as the hole-transport layer and (6,6)-phenyl C61 -butyric acid methyl ester (PCBM) as electron-acceptor layer in an inverted p-i-n device configuration. The perovskite solar cells utilizing a bio-based charge-transport layer demonstrate power conversion efficiency values of 15.86 %, with short-circuit current density of 20.85 mA cm(-2) , open circuit voltage of 1.04 V, and fill factor of 73.15 %, and improved lifetime. DNA-based devices maintained above 85 % of the initial efficiency after 50 days in air.

Keywords: dna-ctma; hole transport layer; pedot:pss; perovskite solar cells; stability.

MeSH terms

  • Calcium Compounds / chemistry*
  • Cetrimonium
  • Cetrimonium Compounds / chemistry*
  • DNA / chemistry*
  • Electric Power Supplies*
  • Electron Transport
  • Oxides / chemistry*
  • Solar Energy*
  • Titanium / chemistry*

Substances

  • Calcium Compounds
  • Cetrimonium Compounds
  • Oxides
  • perovskite
  • DNA
  • Titanium
  • Cetrimonium