The importance of intratumoral heterogeneity has been highlighted by the identification and characterization of cancer stem cells (CSCs). Based on the differential responsiveness to a Sox2 reporter, SRR2, we had found a novel dichotomy in esophageal squamous cell carcinoma (ESCC) cells, with reporter-responsive (RR) cells showing more CSC-like features than reporter-unresponsive (RU) cells. Specifically, RR cells exhibited significantly higher tumorsphere formation capacity, proportions of CD44(High) cells, chemoresistance to cisplatin, and tumorigenic potential in vivo. H2 O2 , a potent inducer of oxidative stress and reactive oxygen species, was found to induce a conversion from RU to RR cells; importantly, converted RR cells acquired CSC-like features. The PI3K/AKT/c-MYC signalling axis is important in this context, since pharmacologic blockade of PI3K-AKT or siRNA knockdown of c-MYC effectively inhibited the RR phenotype and its associated CSC-like features, as well as the H2 O2 -induced RU/RR conversion. In a cohort of 188 ESCC patient samples, we found a significant correlation between strong c-MYC expression and a short overall survival (p = .009). In conclusion, we have described a novel intratumoral heterogeneity in ESCC. The identification of the PI3K/AKT/c-MYC axis as a driver of CSC-like features carries therapeutic implications. Stem Cells 2016;34:2040-2051.
Keywords: Cancer stemness; Esophageal squamous cell carcinoma; Intra-tumoral heterogeneity; Oxidative stress; c-MYC.
© 2016 AlphaMed Press.