Prostate cancer is the second most common cause of cancer mortality among men in the United States. While many prostate cancers are indolent, an important subset of patients experiences disease recurrence after conventional therapy and progresses to castration-resistant prostate cancer (CRPC), which is currently incurable. Thus, there is a critical need to identify biomarkers that will distinguish indolent from aggressive disease, as well as novel therapeutic targets for the prevention or treatment of CRPC. In recent years, long noncoding RNAs (lncRNAs) have emerged as an important class of biological molecules. LncRNAs are polyadenylated RNA species that share many similarities with protein-coding genes despite the fact that they are noncoding (not translated into proteins). They are usually transcribed by RNA polymerase II and exhibit the same epigenetic signatures as protein-coding genes. LncRNAs have also been implicated in the development and progression of variety of cancers, including prostate cancer. While a large number of lncRNAs exhibit tissue- and cancer-specific expression, their utility as diagnostic and prognostic biomarkers is just starting to be explored. In this review, we highlight recent findings on the functional role and molecular mechanisms of lncRNAs in the progression of prostate cancer and evaluate their use as potential biomarkers and therapeutic targets.