Macromolecules (proteins/peptides) have the potential for the development of new therapeutics. Due to their specific mechanism of action, macromolecules can be administered at relatively low doses compared with small-molecule drugs. Unfortunately, the therapeutic potential and clinical application of macromolecules is hampered by various obstacles including their large size, short in vivo half-life, phagocytic clearance, poor membrane permeability and structural instability. These challenges have encouraged researchers to develop novel strategies for effective delivery of macromolecules. In this review, various routes of macromolecule administration (invasive/noninvasive) are discussed. The advantages/limitations of novel delivery systems and the potential role of nanotechnology for the delivery of macromolecules are elaborated. In addition, fabrication approaches to make nanoformulations in different shapes and sizes are also summarized.
Keywords: biologics; drug delivery; invasive route; macromolecule stability; nanotechnology; noninvasive route; peptide; protein.