Functional role of eukaryotic translation initiation factor 4 gamma 1 (EIF4G1) in NSCLC

Oncotarget. 2016 Apr 26;7(17):24242-51. doi: 10.18632/oncotarget.8168.

Abstract

Eukaryotic translation initiation factor 4 gamma 1(EIF4G1) is related to tumorigenesis and tumor progression. However, its role and the underlying mechanisms in the regulation of tumor development in non-small cell lung cancers (NSCLC) remain largely unknown. Here we report that the levels of EIF4G1 expression are much higher in NSCLC cell lines and tumor tissues than those in the normal lung cells and adjacent normal tissues from the same patients. Using shRNA to knock down EIF4G1 expression stably, we found EIF4G1 required for NSCLC cell proliferation, anchorage-independent growth, migration and invasion. Furthermore, silencing of EIF4G1 induces NSCLC cell apoptosis and causes G0/G1 cell cycle arrest. To identify the partner protein network of EIF4G1 in NSCLC cells, we found that Ubiquitin-specific protease 10 (USP10) can directly interacts with EIF4G1, while acting as a negative regulator for EIF4G1-mediated functions. Together, our results indicate that EIF4G1 functions as an oncoprotein during NSCLC development, which may represent a novel and promising therapeutic target in lung cancer.

Keywords: EIF4G1; NSCLC; USP10; lung cancer.

MeSH terms

  • Apoptosis
  • Biomarkers, Tumor / genetics
  • Biomarkers, Tumor / metabolism
  • Carcinoma, Non-Small-Cell Lung / genetics
  • Carcinoma, Non-Small-Cell Lung / metabolism
  • Carcinoma, Non-Small-Cell Lung / pathology*
  • Cell Proliferation
  • Cell Transformation, Neoplastic / genetics
  • Cell Transformation, Neoplastic / metabolism
  • Cell Transformation, Neoplastic / pathology*
  • Eukaryotic Initiation Factor-4G / antagonists & inhibitors
  • Eukaryotic Initiation Factor-4G / genetics
  • Eukaryotic Initiation Factor-4G / metabolism*
  • Follow-Up Studies
  • Gene Expression Regulation, Neoplastic*
  • Humans
  • Lung Neoplasms / genetics
  • Lung Neoplasms / metabolism
  • Lung Neoplasms / pathology*
  • Prognosis
  • RNA, Small Interfering / genetics
  • Tumor Cells, Cultured

Substances

  • Biomarkers, Tumor
  • EIF4G1 protein, human
  • Eukaryotic Initiation Factor-4G
  • RNA, Small Interfering