Mutational status of synchronous and metachronous tumor samples in patients with metastatic non-small-cell lung cancer

BMC Cancer. 2016 Mar 11:16:210. doi: 10.1186/s12885-016-2249-6.

Abstract

Backgrounds: Despite reported discordance between the mutational status of primary lung cancers and their metastases, metastatic sites are rarely biopsied and targeted therapy is guided by genetic biomarkers detected in the primary tumor. This situation is mostly explained by the apparent stability of EGFR-activating mutations. Given the dramatic increase in the range of candidate drugs and high rates of drug resistance, rebiopsy or liquid biopsy may become widespread. The purpose of this study was to test genetic biomarkers used in clinical practice (EGFR, ALK) and candidate biomarkers identified by the French National Cancer Institute (KRAS, BRAF, PIK3CA, HER2) in patients with metastatic non-small-cell lung cancer for whom two tumor samples were available.

Methods: A retrospective study identified 88 tumor samples collected synchronously or metachronously, from the same or two different sites, in 44 patients. Mutation analysis used SNaPshot (EGFR, KRAS, BRAF missense mutations), pyrosequencing (EGFR and PIK3CA missense mutations), sizing assays (EGFR and HER2 indels) and IHC and/or FISH (ALK rearrangements).

Results: About half the patients (52%) harbored at least one mutation. Five patients had an activating mutation of EGFR in both the primary tumor and the metastasis. The T790M resistance mutation was detected in metastases in 3 patients with acquired resistance to EGFR tyrosine kinase inhibitors. FISH showed discordance in ALK status between a small biopsy sample and the surgical specimen. KRAS mutations were observed in 36% of samples, six patients (14%) having discordant genotypes; all discordances concerned sampling from different sites. Two patients (5%) showed PI3KCA mutations. One metastasis harbored both PI3KCA and KRAS mutations, while the synchronously sampled primary tumor was mutation free. No mutations were detected in BRAF and HER2.

Conclusions: This study highlighted noteworthy intra-individual discordance in KRAS mutational status, whereas EGFR status was stable. Intratumoral heterogeneity for ALK rearrangement suggests a limitation of single-biopsy analysis for therapeutic strategy with crizotinib.

Keywords: Genetic biomarkers; Metastatic lesion; Non-small-cell lung cancer; Rebiopsy; Targeted therapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Anaplastic Lymphoma Kinase
  • Biomarkers, Tumor / genetics*
  • Biopsy
  • Carcinoma, Non-Small-Cell Lung / genetics*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Class I Phosphatidylinositol 3-Kinases
  • ErbB Receptors / genetics
  • Female
  • Humans
  • Male
  • Middle Aged
  • Molecular Targeted Therapy*
  • Mutation
  • Neoplasm Metastasis / genetics*
  • Neoplasm Metastasis / pathology
  • Phosphatidylinositol 3-Kinases / genetics
  • Proto-Oncogene Proteins B-raf / genetics
  • Proto-Oncogene Proteins p21(ras) / genetics
  • Receptor Protein-Tyrosine Kinases / genetics
  • Receptor, ErbB-2 / genetics

Substances

  • Biomarkers, Tumor
  • KRAS protein, human
  • Phosphatidylinositol 3-Kinases
  • Class I Phosphatidylinositol 3-Kinases
  • PIK3CA protein, human
  • ALK protein, human
  • Anaplastic Lymphoma Kinase
  • EGFR protein, human
  • ERBB2 protein, human
  • ErbB Receptors
  • Receptor Protein-Tyrosine Kinases
  • Receptor, ErbB-2
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
  • Proto-Oncogene Proteins p21(ras)