Diastereomerization Dynamics of a Bistridentate Ru(II) Complex

Inorg Chem. 2016 Mar 21;55(6):3015-22. doi: 10.1021/acs.inorgchem.5b02893. Epub 2016 Mar 10.

Abstract

The unsymmetrical nature of a new tridentate ligand bis(quinolinyl)-1,3-pyrazole (DQPz) is exploited in a bistridentate Ru(II) complex [Ru(DQPz)2](2+) to elucidate an unexpected dynamic diastereomerism. Structural characterization based on a combination of nuclear magnetic resonance spectroscopy and density functional theory calculations reveals the first quantifiable diastereomerization dynamics for Ru complexes with fully conjugated tridentate heteroaromatic ligands. A mechanism that involves a large-scale twisting motion of the ligands is proposed to explain the dynamic interconversion between the observed diastereomers, and the analysis of both experiments and calculations reveals a potential energy landscape with a transition barrier for the diastereomerization of ∼70 kJ mol(-1). The structural flexibility demonstrated around the central transition metal ion has implications for integration of complexes into catalytic and photochemical applications.

Publication types

  • Research Support, Non-U.S. Gov't