Background: It is unknown if ambient fine particulate matter (PM2.5) is associated with lower renal function, a cardiovascular risk factor.
Objective: We investigated whether long-term PM2.5 exposure was associated with estimated glomerular filtration rate (eGFR) in a cohort of older men living in the Boston Metropolitan area.
Methods: This longitudinal analysis included 669 participants from the Veterans Administration Normative Aging Study with up to four visits between 2000 and 2011 (n = 1,715 visits). Serum creatinine was measured at each visit, and eGFR was calculated according to the Chronic Kidney Disease Epidemiology Collaboration equation. One-year exposure to PM2.5 prior to each visit was assessed using a validated spatiotemporal model that utilized satellite remote-sensing aerosol optical depth data. eGFR was modeled in a time-varying linear mixed-effects regression model as a continuous function of 1-year PM2.5, adjusting for important covariates.
Results: One-year PM2.5 exposure was associated with lower eGFRs; a 2.1-μg/m3 interquartile range higher 1-year PM2.5 was associated with a 1.87 mL/min/1.73 m2 lower eGFR [95% confidence interval (CI): -2.99, -0.76]. A 2.1 μg/m3-higher 1-year PM2.5 was also associated with an additional annual decrease in eGFR of 0.60 mL/min/1.73 m2 per year (95% CI: -0.79, -0.40).
Conclusions: In this longitudinal sample of older men, the findings supported the hypothesis that long-term PM2.5 exposure negatively affects renal function and increases renal function decline.
Citation: Mehta AJ, Zanobetti A, Bind MC, Kloog I, Koutrakis P, Sparrow D, Vokonas PS, Schwartz JD. 2016. Long-term exposure to ambient fine particulate matter and renal function in older men: the VA Normative Aging Study. Environ Health Perspect 124:1353-1360; http://dx.doi.org/10.1289/ehp.1510269.