Background: The maintenance of harmful alcohol use can be considered a reiterated decision in favour of alcohol in concrete drinking occasions. These decisions are often made despite an intention to quit or reduce alcohol consumption. We tested if a hyperactive reward system and/or an impaired cognitive control system contribute to such unfavourable decision-making.
Methods: In this fMRI study, men with modest to harmful drinking behaviour, which was measured using the Alcohol Use Disorders Identification Test (AUDIT), repeatedly made decisions between alcoholic and nonalcoholic drinks. Based on prior individual ratings, decision pairs were created with an alcoholic decision option considered more desirable but less beneficial by the participant. By correlating AUDIT scores with brain activation during decision-making, we determined areas explicitly related to pro-alcohol decisions in men with greater drinking severity.
Results: Thirty-eight men participated in our study. Behaviourally, we found a positive correlation between AUDIT scores and the number of decisions for desired alcoholic drinks compared with beneficial nonalcoholic drinks. The fMRI results show that AUDIT scores were positively associated with activation in areas associated with reward and motivation processing (i.e., ventral striatum, amygdala, medial prefrontal cortex) during decisions favouring a desired, nonbeneficial alcoholic drink. Conversely, we did not find hypoactivation in areas associated with self-control (dorsolateral prefrontal cortex). These effects were not present when participants chose a desired, nonbenefical, nonalcoholic drink.
Limitations: The men participating in our study had to be abstinent and would potentially consume an alcoholic drink at the end of the experiment. Hence, we did not define manifest alcohol dependence as an inclusion criterion and instead focused on less severely affected individuals.
Conclusion: Our results indicate that with growing drinking severity, decisions for alcoholic drinks are associated with increasing activity in reward-associated neural systems, rather than decreasing activity in self-control-associated systems.