Carbon nanotubes as an efficient hole collector for high voltage methylammonium lead bromide perovskite solar cells

Nanoscale. 2016 Mar 28;8(12):6352-60. doi: 10.1039/c5nr06177f.

Abstract

A high open circuit voltage (V(OC)) close to 1.4 V under AM 1.5, 100 mW cm(-2) conditions is achieved when carbon nanotubes (CNTs) are used as a hole conductor in methyl ammonium lead bromide (MAPbBr3) perovskite solar cells. Time-resolved photoluminescence and impedance spectroscopy investigations suggest that the observed high V(OC) is a result of the better charge extraction and lower recombination of the CNT hole conductor. Tandem solar cells with all perovskite absorbers are demonstrated with a MAPbBr3/CNT top cell and a MAPbI3 bottom cell, achieving a V(OC) of 2.24 V in series connection. The semitransparent and high voltage MAPbBr3/CNT solar cells show great potential for applications in solar cell windows, tandem solar cells and solar driven water splitting.

Publication types

  • Research Support, Non-U.S. Gov't