Alkaline-Phosphatase-Based Nanostructure Assemblies for Electrochemical Detection of microRNAs

J Nanosci Nanotechnol. 2015 May;15(5):3378-84. doi: 10.1166/jnn.2015.10201.

Abstract

Different nanoarchitectures, rich in enzyme labels, are herein investigated for signal amplification in the electrochemical detection of nucleic acids and in particular of microRNAs. Dendritic amplification, accomplished by the use of streptavidin and biotinylated alkaline phosphatase, and enzyme-decorated liposomes are used as labels to amplify the microRNA-sensing, by their association to the probe-microRNA hybrid generated onto a gold transducer. Differential pulse voltammetry and faradaic impedance spectroscopy were employed to characterize these different amplification routes.

MeSH terms

  • Alkaline Phosphatase / chemistry*
  • Alkaline Phosphatase / metabolism
  • Biosensing Techniques / methods*
  • Biotin
  • Electrochemical Techniques / methods*
  • Liposomes
  • MicroRNAs / analysis*
  • Nanostructures / chemistry*
  • Streptavidin

Substances

  • Liposomes
  • MicroRNAs
  • Biotin
  • Streptavidin
  • Alkaline Phosphatase