Introduction: Glial fibrillary acidic protein (GFAP) may serve as a serum marker of traumatic brain injury (TBI) that can be used to monitor biochemical changes in patients and gauge the response to treatment. However, the temporal profile of serum GFAP in the acute period of brain injury and the associated utility for outcome prediction has not been elucidated.
Methods: We conducted a prospective longitudinal cohort study of consecutive severe TBI patients in a local tertiary neurotrauma center in Shanghai, China, between March 2011 and September 2014. All patients were monitored and managed with a standardized protocol with inclusion of hypothermia and other intensive care treatments. Serum specimens were collected on admission and then daily for the first 5 days. GFAP levels were measured using enzyme-linked immunosorbent assay techniques. Patient outcome was assessed at 6 months post injury with the Glasgow Outcome Scale and further grouped into death versus survival and unfavorable versus favorable.
Results: A total of 67 patients were enrolled in the study. The mean time from injury to admission was 2.6 hours, and the median admission Glasgow Coma Scale score was 6. Compared with healthy subjects, patients with severe TBI had increased GFAP levels on admission and over the subsequent 5 days post injury. Serum GFAP levels showed a gradual reduction from admission to day 3, and then rebounded on day 4 when hypothermia was discontinued with slow rewarming. GFAP levels were significantly higher in patients who died or had an unfavorable outcome across all time points than in those who were alive or had a favorable outcome. Results of receiver operating characteristic curve analysis indicated that serum GFAP at each time point could predict neurological outcome at 6 months. The areas under the curve for GFAP on admission were 0.761 for death and 0.823 for unfavorable outcome, which were higher than those for clinical variables such as age, Glasgow Coma Scale score, and pupil reactions.
Conclusions: Serum GFAP levels on admission and during the first 5 days of injury were increased in patients with severe TBI and were predictive of neurological outcome at 6 months.