Astrocyte Ca2+ Signaling Drives Inversion of Neurovascular Coupling after Subarachnoid Hemorrhage

J Neurosci. 2015 Sep 30;35(39):13375-84. doi: 10.1523/JNEUROSCI.1551-15.2015.

Abstract

Physiologically, neurovascular coupling (NVC) matches focal increases in neuronal activity with local arteriolar dilation. Astrocytes participate in NVC by sensing increased neurotransmission and releasing vasoactive agents (e.g., K(+)) from perivascular endfeet surrounding parenchymal arterioles. Previously, we demonstrated an increase in the amplitude of spontaneous Ca(2+) events in astrocyte endfeet and inversion of NVC from vasodilation to vasoconstriction in brain slices obtained from subarachnoid hemorrhage (SAH) model rats. However, the role of spontaneous astrocyte Ca(2+) signaling in determining the polarity of the NVC response remains unclear. Here, we used two-photon imaging of Fluo-4-loaded rat brain slices to determine whether altered endfoot Ca(2+) signaling underlies SAH-induced inversion of NVC. We report a time-dependent emergence of endfoot high-amplitude Ca(2+) signals (eHACSs) after SAH that were not observed in endfeet from unoperated animals. Furthermore, the percentage of endfeet with eHACSs varied with time and paralleled the development of inversion of NVC. Endfeet with eHACSs were present only around arterioles exhibiting inversion of NVC. Importantly, depletion of intracellular Ca(2+) stores using cyclopiazonic acid abolished SAH-induced eHACSs and restored arteriolar dilation in SAH brain slices to two mediators of NVC (a rise in endfoot Ca(2+) and elevation of extracellular K(+)). These data indicate a causal link between SAH-induced eHACSs and inversion of NVC. Ultrastructural examination using transmission electron microscopy indicated that a similar proportion of endfeet exhibiting eHACSs also exhibited asymmetrical enlargement. Our results demonstrate that subarachnoid blood causes a delayed increase in the amplitude of spontaneous intracellular Ca(2+) release events leading to inversion of NVC. Significance statement: Aneurysmal subarachnoid hemorrhage (SAH)--strokes involving cerebral aneurysm rupture and release of blood onto the brain surface--are associated with high rates of morbidity and mortality. A common complication observed after SAH is the development of delayed cerebral ischemia at sites often remote from the site of rupture. Here, we provide evidence that SAH-induced changes in astrocyte Ca(2+) signaling lead to a switch in the polarity of the neurovascular coupling response from vasodilation to vasoconstriction. Thus, after SAH, signaling events that normally lead to vasodilation and enhanced delivery of blood to active brain regions cause vasoconstriction that would limit cerebral blood flow. These findings identify astrocytes as a key player in SAH-induced decreased cortical blood flow.

Keywords: astrocyte endfeet; calcium signaling; neurovascular coupling; reactive astrocytes; subarachnoid hemorrhage; two-photon imaging.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arterioles / pathology
  • Astrocytes / pathology*
  • Astrocytes / ultrastructure
  • Calcium Signaling*
  • Cerebrovascular Circulation
  • Male
  • Neurovascular Coupling*
  • Rats
  • Rats, Sprague-Dawley
  • Subarachnoid Hemorrhage / pathology*
  • Subarachnoid Hemorrhage / physiopathology
  • Vasoconstriction
  • Vasodilation