Pt/graphene composites were synthesized by loading platinum nanoparticles onto graphene and etched at 1000 °C in a hydrogen atmosphere. This results in the formation of a dense array of nanostructured defect sites in the graphene, including trenches, nanoribbons, islands, and holes. These defect sites result in an increase in the number of unsaturated carbon atoms and, consequently, enhance the interaction of the CO2 molecules with the etched graphene. This leads to a high capacity for storing CO2; 1 g of the etched samples can store up to 76.3 cm(3) of CO2 at 273 K under ambient pressure.
Keywords: CO2 adsorption; Pt−graphene composites; defect sites; graphene.