Metallic zinc exhibits optimal biocompatibility for bioabsorbable endovascular stents

Mater Sci Eng C Mater Biol Appl. 2015 Nov 1:56:467-72. doi: 10.1016/j.msec.2015.07.022. Epub 2015 Jul 16.

Abstract

Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells.

Keywords: Bioabsorbable; Biocompatible; Corrosion; Hyperplasia; Stent; Zinc.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Absorbable Implants*
  • Animals
  • Aorta, Abdominal*
  • Materials Testing*
  • Mice
  • Rats
  • Rats, Sprague-Dawley
  • Stents*
  • Time Factors
  • Zinc*

Substances

  • Zinc