Camel spiders (Solifugae) are a diverse but poorly studied order of arachnids. No robust phylogenetic analysis has ever been carried out for the order or for any family within the Solifugae. We present a molecular phylogenetic analysis of the endemic North American family Eremobatidae Kraepelin, 1899, the first such analysis of a family of Solifugae. We use a multi-locus exemplar approach using DNA sequences from partial nuclear (28S rDNA and Histone H3) and mitochondrial (16S rRNA and Cytochrome c Oxidase I) gene loci for 81 ingroup exemplars representing all genera of Eremobatidae and most species groups within the genera Eremobates Banks, 1900, Eremochelis Roewer, 1934, and Hemerotrecha Banks, 1903. Maximum Likelihood and two Bayesian analyses consistently recovered the monophyly of Eremobatidae, Eremorhax Roewer, 1934 and Eremothera Muma, 1951 along with a group comprising all subfamily Eremobatinae Kraepelin, 1901 exemplars except Horribates bantai Muma, 1989 and a group comprising all Eremocosta Roewer, 1934 exemplars except Eremocosta acuitalpanensis (Vasquez and Gavin, 2000). The subfamily Therobatinae Muma, 1951 and the genera Chanbria Muma, 1951, Hemerotrecha, Eremochelis, and Eremobates were polyphyletic or paraphyletic. Only the banksi group of Hemerotrecha was monophyletic; the other species groups recognized within Eremobates, Eremochelis, and Hemerotrecha were paraphyletic or polyphyletic. We found no support for the monophyly of the subfamily Therobatinae. A time-calibrated phylogeny dated the most recent common ancestor of extant eremobatids to the late Eocene to early Miocene, with a mean estimate in the late Oligocene (32.2 Ma).
Keywords: BEAST; Bayesian inference; Eremobatinae; Maximum likelihood; Molecular clock; Therobatinae.
Copyright © 2015 Elsevier Inc. All rights reserved.