Nucleocytoplasmic glycosylation of proteins with O-linked N-acetylglucosamine residues (O-GlcNAc) is recognized as a conserved post-translational modification found in all metazoans. O-GlcNAc has been proposed to regulate diverse cellular processes. Impaired cellular O-GlcNAcylation has been found to lead to decreases in the levels of various proteins, which is one mechanism by which O-GlcNAc seems to exert its varied physiological effects. Here we show that O-GlcNAcylation also occurs cotranslationally. This process protects nascent polypeptide chains from premature degradation by decreasing cotranslational ubiquitylation. Given that hundreds of proteins are O-GlcNAcylated within cells, our findings suggest that cotranslational O-GlcNAcylation may be a phenomenon regulating proteostasis of an array of nucleocytoplasmic proteins. These findings set the stage to assess whether O-GlcNAcylation has a role in protein quality control in a manner that bears similarity with the role played by N-glycosylation within the secretory pathway.