Liver cirrhosis represents the end stage of most chronic inflammatory liver diseases and is a major global health burden. Despite the enormous relevance of cirrhotic disease, pharmacological strategies for prevention or treatment of hepatic fibrosis are still limited, underlining the need to establish a better understanding of the molecular mechanisms underlying the pathogenesis of hepatic cirrhosis. Recently, miRNAs have emerged as a new class of RNAs that do not withhold the information to encode for proteins but regulate whole gene expression networks during different physiological and pathological processes. Various authors demonstrated that miRNA species are functionally involved in the regulation of chronic liver damage and development of liver cirrhosis in inflamed livers. Moreover, circulating miRNA patterns were suggested to serve as blood-based biomarkers indicating liver injury and progression to hepatic cirrhosis and cancer. Here we summarize current findings on a potential role of miRNAs in the cascade leading from liver inflammation to liver fibrosis and finally hepatocellular carcinoma. We compare data from animal models with findings on miRNAs dysregulated in human patients and finally highlight a potential use of miRNAs as biomarkers for liver injury, fibrosis and cancer.
Keywords: biomarker; fibrosis; inflammation; liver; miRNAs.