Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis

Plant Physiol. 2015 Mar;167(3):1039-57. doi: 10.1104/pp.114.249870. Epub 2015 Jan 22.

Abstract

Protein phosphorylation events play key roles in maintaining cellular ion homeostasis in higher plants, and the regulatory roles of these events in Na(+) and K(+) transport have been studied extensively. However, the regulatory mechanisms governing Mg(2+) transport and homeostasis in higher plants remain poorly understood, despite the vital roles of Mg(2+) in cellular function. A member of subclass III sucrose nonfermenting-1-related protein kinase2 (SnRK2), SRK2D/SnRK2.2, functions as a key positive regulator of abscisic acid (ABA)-mediated signaling in response to water deficit stresses in Arabidopsis (Arabidopsis thaliana). Here, we used immunoprecipitation coupled with liquid chromatography-tandem mass spectrometry analyses to identify Calcineurin B-like-interacting protein kinase26 (CIPK26) as a novel protein that physically interacts with SRK2D. In addition to CIPK26, three additional CIPKs (CIPK3, CIPK9, and CIPK23) can physically interact with SRK2D in planta. The srk2d/e/i triple mutant lacking all three members of subclass III SnRK2 and the cipk26/3/9/23 quadruple mutant lacking CIPK26, CIPK3, CIPK9, and CIPK23 showed reduced shoot growth under high external Mg(2+) concentrations. Similarly, several ABA biosynthesis-deficient mutants, including aba2-1, were susceptible to high external Mg(2+) concentrations. Taken together, our findings provided genetic evidence that SRK2D/E/I and CIPK26/3/9/23 are required for plant growth under high external Mg(2+) concentrations in Arabidopsis. Furthermore, we showed that ABA, a key molecule in water deficit stress signaling, also serves as a signaling molecule in plant growth under high external Mg(2+) concentrations. These results suggested that SRK2D/E/I- and CIPK26/3/9/23-mediated phosphorylation signaling pathways maintain cellular Mg(2+) homeostasis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / biosynthesis
  • Arabidopsis / drug effects
  • Arabidopsis / enzymology*
  • Arabidopsis / growth & development*
  • Arabidopsis Proteins / metabolism*
  • Chromatography, Liquid
  • Immunoprecipitation
  • Magnesium / pharmacology*
  • Models, Biological
  • Multigene Family*
  • Mutation / genetics
  • Phenotype
  • Phosphorylation / drug effects
  • Plant Development / drug effects*
  • Protein Binding / drug effects
  • Protein Kinases / metabolism*
  • Tandem Mass Spectrometry

Substances

  • Arabidopsis Proteins
  • Abscisic Acid
  • Protein Kinases
  • Magnesium