Environmental exposure is a key factor of understanding health and diseases. Beyond genetic propensities, many disorders are, in part, caused by human interaction with harmful substances in the water, the soil, or the air. Limited data is available on a disease or substance basis. However, we compile a global repository from literature surveys matching environmental chemical substances exposure with human disorders. We build a bipartite network linking 60 substances to over 150 disease phenotypes. We quantitatively and qualitatively analyze the network and its projections as simple networks. We identify mercury, lead and cadmium as associated with the largest number of disorders. Symmetrically, we show that breast cancer, harm to the fetus and non-Hodgkin's lymphoma are associated with the most environmental chemicals. We conduct statistical analysis of how vertices with similar characteristics form the network interactions. This dyadicity and heterophilicity measures the tendencies of vertices with similar properties to either connect to one-another. We study the dyadic distribution of the substance classes in the networks show that, for instance, tobacco smoke compounds, parabens and heavy metals tend to be connected, which hint at common disease causing factors, whereas fungicides and phytoestrogens do not. We build an exposure network at the systems level. The information gathered in this study is meant to be complementary to the genome and help us understand complex diseases, their commonalities, their causes, and how to prevent and treat them.