Spotting East African mammals in open savannah from space

PLoS One. 2014 Dec 31;9(12):e115989. doi: 10.1371/journal.pone.0115989. eCollection 2014.

Abstract

Knowledge of population dynamics is essential for managing and conserving wildlife. Traditional methods of counting wild animals such as aerial survey or ground counts not only disturb animals, but also can be labour intensive and costly. New, commercially available very high-resolution satellite images offer great potential for accurate estimates of animal abundance over large open areas. However, little research has been conducted in the area of satellite-aided wildlife census, although computer processing speeds and image analysis algorithms have vastly improved. This paper explores the possibility of detecting large animals in the open savannah of Maasai Mara National Reserve, Kenya from very high-resolution GeoEye-1 satellite images. A hybrid image classification method was employed for this specific purpose by incorporating the advantages of both pixel-based and object-based image classification approaches. This was performed in two steps: firstly, a pixel-based image classification method, i.e., artificial neural network was applied to classify potential targets with similar spectral reflectance at pixel level; and then an object-based image classification method was used to further differentiate animal targets from the surrounding landscapes through the applications of expert knowledge. As a result, the large animals in two pilot study areas were successfully detected with an average count error of 8.2%, omission error of 6.6% and commission error of 13.7%. The results of the study show for the first time that it is feasible to perform automated detection and counting of large wild animals in open savannahs from space, and therefore provide a complementary and alternative approach to the conventional wildlife survey techniques.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Africa, Eastern
  • Animals
  • Censuses*
  • Image Processing, Computer-Assisted / methods*
  • Kenya
  • Mammals
  • Photography
  • Population Dynamics / statistics & numerical data*
  • Satellite Imagery / methods*
  • Space Flight

Grants and funding

This work was funded by the Erasmus Mundus External Co-operation Window Programme of the European Union (http://www.emecwchina.org/ L14a0901205), and co-funded by the Bristol Alumni Cabot Scholarship of the University of Bristol (DF4215). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.