Purpose of the study: The definitive treatment for liver failure is, currently, liver transplantation. Research into other possible treatments, focused on achieving regeneration of the liver parenchyma, have led to the development of methods to generate hepatocytes from stem cells. In our study, we transplant allogenic adipose-derived stem cells (ASCs), not previously differentiated to hepatocytes, to treat acute liver failure induced by intraperitoneal administration of carbon tetrachloride (CCl4) in a Sprague-Dawley rat model.
Material and methods: The ASCs were delivered via the tail vein, having previously been labeled with PKH26, a fluorescent membrane marker. Two control groups were established, Group 1(n = 15) consisting of olive oil (5 mL/kg) and Group 2(n = 15): 1 × 10(6) PKH26-labeled ASCs. Further, two study groups, Group 3(n = 30): CCl4 dissolved in olive oil and Group 4(n = 30): CCl4 dissolved in olive oil and 1 × 10(6) PKH26-labeled ASCs completed the experimental design.
Results: Blood samples were analyzed, finding AST and ALT levels significantly higher in treatment over control groups at 24 and 48 hours. The mortality rates were statistically different between control groups and Group 3 (Group 1-3 p = .04, Group 2-3 p = .04) and between Groups 3 and 4 (p = .02). Examining the liver parenchyma, a significantly higher number of ASCs were observed in Group 4 than in Group 2 at all time points (p = .00).
Conclusions: The intravenous injection of allogenic ASCs in this model of CCl4-induced liver failure reduced the mortality in treated animals. ASCs injected in the rat tail vein were found in the liver in animals with induced acute liver failure.
Keywords: adult stem cells; fulminant liver failure; liver failure; liver transplant; mesenchymal stem cells.