The aim of the present study was to investigate the feasibility of measuring metabolic tumor burden using [F-18] fluorodeoxyglucose ((18) F-FDG) positron emission tomography/computed tomography (PET/CT) in patients with relapsed or refractory diffuse large B-cell lymphoma (DLBCL) treated with bendamustine-rituximab. Because the standardized uptake value is a critical parameter of tumor characterization, we carried out a phantom study of (18) F-FDG PET/CT to ensure quality control for 28 machines in the 24 institutions (Japan, 17 institutions; Korea, 7 institutions) participating in our clinical study. Fifty-five patients with relapsed or refractory DLBCL were enrolled. The (18) F-FDG PET/CT was acquired before treatment, after two cycles, and after the last treatment cycle. Treatment response was assessed after two cycles and after the last cycle using the Lugano classification. Using this classification, remission was complete in 15 patients (27%) and incomplete in 40 patients (73%) after two cycles of therapy, and remission was complete in 32 patients (58%) and incomplete in 23 patients (42%) after the last treatment cycle. The percentage change in all PET/CT parameters except for the area under the curve of the cumulative standardized uptake value-volume histogram was significantly greater in complete response patients than in non-complete response patients after two cycles and the last cycle. The Cox proportional hazard model and best subset selection method revealed that the percentage change of the sum of total lesion glycolysis after the last cycle (relative risk, 5.24; P = 0.003) was an independent predictor of progression-free survival. The percent change of sum of total lesion glycolysis, calculated from PET/CT, can be used to quantify the response to treatment and can predict progression-free survival after the last treatment cycle in patients with relapsed or refractory DLBCL treated with bendamustine-rituximab.
Keywords: [F-18] fluorodeoxyglucose; diffuse large B-cell lymphoma; lymphoma; metabolic tumor burden; positron emission tomography/computed tomography.
© 2014 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.