Key points: High frequency (100-250 Hz) neuronal oscillations in the hippocampus, known as sharp-wave ripples (SWRs), synchronise the firing behaviour of groups of neurons and play a key role in memory consolidation. Learning and memory are severely compromised in dementias such as Alzheimer's disease; however, the effects of dementia-related pathology on SWRs are unknown. The frequency and temporal structure of SWRs was disrupted in a transgenic mouse model of tauopathy (one of the major hallmarks of several dementias). Excitatory pyramidal neurons were more likely to fire action potentials in a phase-locked manner during SWRs in the mouse model of tauopathy; conversely, inhibitory interneurons were less likely to fire phase-locked spikes during SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may underlie the cognitive impairments in this model of dementia.
Abstract: Neurons within the CA1 region of the hippocampus are co-activated during high frequency (100-250 Hz) sharp-wave ripple (SWR) activity in a manner that probably drives synaptic plasticity and promotes memory consolidation. In this study we have used a transgenic mouse model of dementia (rTg4510 mice), which overexpresses a mutant form of tau protein, to examine the effects of tauopathy on hippocampal SWRs and associated neuronal firing. Tetrodes were used to record simultaneous extracellular action potentials and local field potentials from the dorsal CA1 pyramidal cell layer of 7- to 8-month-old wild-type and rTg4510 mice at rest in their home cage. At this age point these mice exhibit neurofibrillary tangles, neurodegeneration and cognitive deficits. Epochs of sleep or quiet restfulness were characterised by minimal locomotor activity and a low theta/delta ratio in the local field potential power spectrum. SWRs detected off-line were significantly lower in amplitude and had an altered temporal structure in rTg4510 mice. Nevertheless, the average frequency profile and duration of the SWRs were relatively unaltered. Putative interneurons displayed significantly less temporal and phase locking to SWRs in rTg4510 mice, whilst putative pyramidal neurons showed increased temporal and phase locking to SWRs. These findings indicate there is reduced inhibitory control of hippocampal network events and point to a novel mechanism which may contribute to impairments in memory consolidation in this model of dementia.
© 2014 The Authors. The Journal of Physiology © 2014 The Physiological Society.