Background: The bicipital tunnel is the extra-articular, fibro-osseous structure that encloses the long head of the biceps tendon.
Methods: Twelve cadaveric shoulder specimens underwent in situ casting of the bicipital tunnel with methyl methacrylate cement to demonstrate structural competence (n = 6) and en bloc harvest with gross and histologic evaluation (n = 6). The percentage of empty tunnel was calculated histologically by subtracting the proportion of cross-sectional area of the long head of the biceps tendon from that of the bicipital tunnel for each zone.
Results: Cement casting demonstrated that the bicipital tunnel was a closed space. Zone 1 extended from the articular margin to the distal margin of the subscapularis tendon. Zone 2 extended from the distal margin of the subscapularis tendon to the proximal margin of the pectoralis major tendon. Zone 3 was the subpectoral region. Zones 1 and 2 were both enclosed by a dense connective tissue sheath and demonstrated the presence of synovium. Zone 3 had significantly greater percentage of empty tunnel than zones 1 and 2 did (P < .01).
Conclusion: The bicipital tunnel is a closed space with 3 distinct zones. Zones 1 and 2 have similar features, including the presence of synovium, but differ from zone 3. A significant bottleneck occurs between zone 2 and zone 3, most likely at the proximal margin of the pectoralis major tendon. The bicipital tunnel is a closed space where space-occupying lesions may produce a bicipital tunnel syndrome. Careful consideration should be given to surgical techniques that decompress both zones 1 and 2 of the bicipital tunnel.
Keywords: Long head; biceps tendinitis; biceps tendon; bicipital tunnel; tenodesis.
Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.