Background: States of depression are associated with increased sensitivity to negative events. For this novel study, we have assessed the relationship between the number of depressive episodes and the dysfunctional processing of emotional facial expressions.
Methodology/principal findings: We used a visual emotional oddball paradigm to manipulate the processing of emotional information while event-related brain potentials were recorded in 45 patients with first episode major depression (F-MD), 40 patients with recurrent major depression (R-MD), and 46 healthy controls (HC). Compared with the HC group, F-MD patients had lower N170 amplitudes when identifying happy, neutral, and sad faces; R-MD patients had lower N170 amplitudes when identifying happy and neutral faces, but higher N170 amplitudes when identifying sad faces. F-MD patients had longer N170 latencies when identifying happy, neutral, and sad faces relative to the HC group, and R-MD patients had longer N170 latencies when identifying happy and neutral faces, but shorter N170 latencies when identifying sad faces compared with F-MD patients. Interestingly, a negative relationship was observed between N170 amplitude and the depressive severity score for identification of happy faces in R-MD patients while N170 amplitude was positively correlated with the depressive severity score for identification of sad faces in F-MD and R-MD patients. Additionally, the deficits of N170 amplitude for sad faces positively correlated with the number of depressive episodes in R-MD patients.
Conclusion/significance: These results provide new evidence that having more recurrent depressive episodes and serious depressive states are likely to aggravate the already abnormal processing of emotional facial expressions in patients with depression. Moreover, it further suggests that the impaired processing as indexed by N170 amplitude for positive face identification may be a potentially useful biomarker for predicting propagation of depression while N170 amplitude for negative face identification could be a potential biomarker for depression recurrence.