CITED2-mediated human hematopoietic stem cell maintenance is critical for acute myeloid leukemia

Leukemia. 2015 Mar;29(3):625-35. doi: 10.1038/leu.2014.259. Epub 2014 Sep 3.

Abstract

As the transcriptional coactivator CITED2 (CBP/p300-interacting-transactivator-with-an ED-rich-tail 2) can be overexpressed in acute myeloid leukemia (AML) cells, we analyzed the consequences of high CITED2 expression in normal and AML cells. CITED2 overexpression in normal CD34(+) cells resulted in enhanced hematopoietic stem and progenitor cell (HSPC) output in vitro, as well as in better hematopoietic stem cell (HSC) engraftability in NSG (NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ) mice. This was because of an enhanced quiescence and maintenance of CD34(+)CD38(-) HSCs, due in part to an increased expression of the cyclin-dependent kinase inhibitor CDKN1A. We demonstrated that PU.1 is a critical regulator of CITED2, as PU.1 repressed CITED2 expression in a DNA methyltransferase 3A/B (DNMT3A/B)-dependent manner in normal CD34(+) cells. CD34(+) cells from a subset of AML patients displayed higher expression levels of CITED2 as compared with normal CD34(+) HSPCs, and knockdown of CITED2 in AML CD34(+) cells led to a loss of long-term expansion, both in vitro and in vivo. The higher CITED2 expression resulted from reduced PU.1 activity and/or dysfunction of mutated DNMT3A/B. Collectively, our data demonstrate that increased CITED2 expression results in better HSC maintenance. In concert with low PU.1 levels, this could result in a perturbed myeloid differentiation program that contributes to leukemia maintenance.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antigens, CD34 / genetics
  • Antigens, CD34 / metabolism
  • Cell Proliferation
  • Cyclin-Dependent Kinase Inhibitor p21 / genetics
  • Cyclin-Dependent Kinase Inhibitor p21 / metabolism
  • DNA (Cytosine-5-)-Methyltransferases / genetics
  • DNA (Cytosine-5-)-Methyltransferases / metabolism
  • DNA Methyltransferase 3A
  • DNA Methyltransferase 3B
  • Female
  • Gene Expression Regulation, Leukemic*
  • Graft Survival
  • Hematopoietic Stem Cell Transplantation
  • Hematopoietic Stem Cells / metabolism*
  • Hematopoietic Stem Cells / pathology
  • Humans
  • Leukemia, Myeloid, Acute / genetics*
  • Leukemia, Myeloid, Acute / metabolism
  • Leukemia, Myeloid, Acute / pathology
  • Mice
  • Mice, Inbred NOD
  • Mutation
  • Proto-Oncogene Proteins / genetics*
  • Proto-Oncogene Proteins / metabolism
  • Repressor Proteins / genetics*
  • Repressor Proteins / metabolism
  • Signal Transduction
  • Trans-Activators / genetics*
  • Trans-Activators / metabolism
  • Transplantation, Heterologous

Substances

  • Antigens, CD34
  • CDKN1A protein, human
  • CITED2 protein, human
  • Cyclin-Dependent Kinase Inhibitor p21
  • DNMT3A protein, human
  • Dnmt3a protein, mouse
  • Proto-Oncogene Proteins
  • Repressor Proteins
  • Trans-Activators
  • proto-oncogene protein Spi-1
  • DNA (Cytosine-5-)-Methyltransferases
  • DNA Methyltransferase 3A