A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly

Elife. 2014 Aug 21:3:e03473. doi: 10.7554/eLife.03473.

Abstract

Within a single generation time a growing yeast cell imports ∼14 million ribosomal proteins (r-proteins) into the nucleus for ribosome production. After import, it is unclear how these intrinsically unstable and aggregation-prone proteins are targeted to the ribosome assembly site in the nucleolus. Here, we report the discovery of a conserved nuclear carrier Tsr2 that coordinates transfer of the r-protein eS26 to the earliest assembling pre-ribosome, the 90S. In vitro studies revealed that Tsr2 efficiently dissociates importin:eS26 complexes via an atypical RanGTP-independent mechanism that terminates the import process. Subsequently, Tsr2 binds the released eS26, shields it from proteolysis, and ensures its safe delivery to the 90S pre-ribosome. We anticipate similar carriers-termed here escortins-to securely connect the nuclear import machinery with pathways that deposit r-proteins onto developing pre-ribosomal particles.

Keywords: Diamond-Blackfan anemia (DBA); Tsr2; eS26; nuclear import; rRNA processing; ribosome biogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Active Transport, Cell Nucleus
  • Amino Acid Sequence
  • Carrier Proteins / chemistry
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism*
  • Cell Nucleus / genetics
  • Cell Nucleus / metabolism*
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • GTPase-Activating Proteins / chemistry
  • GTPase-Activating Proteins / genetics
  • GTPase-Activating Proteins / metabolism
  • Karyopherins / chemistry
  • Karyopherins / genetics
  • Karyopherins / metabolism
  • Molecular Sequence Data
  • Protein Binding
  • Protein Stability
  • Proteolysis
  • RNA, Ribosomal, 18S / chemistry
  • RNA, Ribosomal, 18S / genetics
  • RNA, Ribosomal, 18S / metabolism
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Ribosomal Proteins / chemistry
  • Ribosomal Proteins / genetics
  • Ribosomal Proteins / metabolism*
  • Ribosomes / chemistry
  • Ribosomes / metabolism*
  • Saccharomyces cerevisiae / genetics
  • Saccharomyces cerevisiae / metabolism*
  • Saccharomyces cerevisiae Proteins / chemistry
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • beta Karyopherins / chemistry
  • beta Karyopherins / genetics
  • beta Karyopherins / metabolism

Substances

  • Carrier Proteins
  • GTPase-Activating Proteins
  • KAP104 protein, S cerevisiae
  • Kap123 protein, S cerevisiae
  • Karyopherins
  • RNA, Ribosomal, 18S
  • Recombinant Proteins
  • Ribosomal Proteins
  • Saccharomyces cerevisiae Proteins
  • beta Karyopherins

Grants and funding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.