Background: Altered metabolism of eicosanoids is a characteristic finding in aspirin-exacerbated respiratory disease (AERD). Bronchial challenge with lysyl-aspirin can be used as a confirmatory diagnostic test for this clinical condition. Induced sputum allows to measure mediators of asthmatic inflammation in bronchial secretions.
Objectives: To investigate the influence of inhaled lysyl-aspirin on sputum supernatant concentration of eicosanoids during the bronchial challenge test. Subjects with asthma hypersensitive to nonsteroidal anti-inflammatory drugs were compared with aspirin-tolerant asthmatic controls.
Methods: Induced sputum was collected before and following bronchial challenge with lysyl-aspirin. Sputum differential cell count and sputum supernatant concentrations of selected lipoxygenases products: 5-,12-,15-hydroxyeicosatetraenoic acid, cysteinyl leukotrienes, leukotriene B4 , 11-dehydro-thromboxane B2 , and prostaglandins E2 , D2 , and F2α and their metabolites, were measured using validated methods of chromatography-mass spectrometry.
Results: Aspirin precipitated bronchoconstriction in all AERD subjects, but in none of the aspirin-tolerant asthmatics. Phenotypes of asthma based on the sputum cytology did not differ between the groups. Baseline sputum eosinophilia correlated with a higher leukotriene D4 (LTD4 ) and leukotriene E4 (LTE4 ) concentrations. LTC4 , PGE2 , and 11-dehydro-TXB2 did not differ between the groups, but levels of LTD4 , LTE4 , and PGD2 were significantly higher in AERD group. Following the challenge, LTD4 and LTE4 increased, while PGE2 and LTB4 decreased in AERD subjects only.
Conclusions: During the bronchial challenge, decrease in PGE2 and its metabolite is accompanied by a surge in bronchoconstrictory cysteinyl leukotrienes produced at the expense of LTB4 in AERD subjects. Bronchial PGE2 inhibition in AERD seems specific and sensitive to a low dose of aspirin.
Keywords: aspirin-exacerbated respiratory disease; eicosanoids; induced sputum; leukotrienes; prostaglandin E2.
© 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.