Background: Multiple abnormal metabolic traits are found together or "cluster" within individuals more often than is predicted by chance. The individual and combined role of adiposity and insulin resistance (IR) on metabolic trait clustering is uncertain. We tested the hypothesis that change in trait clustering is a function of both baseline level and change in these measures.
Methods: In 2616 nondiabetic Framingham Offspring Study participants, body mass index (BMI) and fasting insulin were related to a within-person 7-year change in a trait score of 0-4 Adult Treatment Panel III metabolic syndrome traits (hypertension, high triglycerides, low high-density lipoprotein cholesterol, hyperglycemia).
Results: At baseline assessment, mean trait score was 1.4 traits, and 7-year mean (SEM) change in trait score was +0.25 (0.02) traits, P<0.0001. In models with BMI predictors only, for every quintile difference in baseline BMI, the 7-year trait score increase was 0.14 traits, and for every quintile increase in BMI during 7-year follow-up, the trait score increased by 0.3 traits. Baseline level and change in fasting insulin were similarly related to trait score change. In models adjusted for age-sex-baseline cluster score, 7-year change in trait score was significantly related to both a 1-quintile difference in baseline BMI (0.07 traits) and fasting insulin (0.18 traits), and to both a 1-quintile 7-year increase in BMI (0.21 traits) and fasting insulin (0.18 traits).
Conclusions: Change in metabolic trait clustering was significantly associated with baseline levels and changes in both BMI and fasting insulin, highlighting the importance of both obesity and IR in the clustering of metabolic traits.