Structural and biochemical characterization reveals LysGH15 as an unprecedented "EF-hand-like" calcium-binding phage lysin

PLoS Pathog. 2014 May 15;10(5):e1004109. doi: 10.1371/journal.ppat.1004109. eCollection 2014 May.

Abstract

The lysin LysGH15, which is derived from the staphylococcal phage GH15, demonstrates a wide lytic spectrum and strong lytic activity against methicillin-resistant Staphylococcus aureus (MRSA). Here, we find that the lytic activity of the full-length LysGH15 and its CHAP domain is dependent on calcium ions. To elucidate the molecular mechanism, the structures of three individual domains of LysGH15 were determined. Unexpectedly, the crystal structure of the LysGH15 CHAP domain reveals an "EF-hand-like" calcium-binding site near the Cys-His-Glu-Asn quartet active site groove. To date, the calcium-binding site in the LysGH15 CHAP domain is unique among homologous proteins, and it represents the first reported calcium-binding site in the CHAP family. More importantly, the calcium ion plays an important role as a switch that modulates the CHAP domain between the active and inactive states. Structure-guided mutagenesis of the amidase-2 domain reveals that both the zinc ion and E282 are required in catalysis and enable us to propose a catalytic mechanism. Nuclear magnetic resonance (NMR) spectroscopy and titration-guided mutagenesis identify residues (e.g., N404, Y406, G407, and T408) in the SH3b domain that are involved in the interactions with the substrate. To the best of our knowledge, our results constitute the first structural information on the biochemical features of a staphylococcal phage lysin and represent a pivotal step forward in understanding this type of lysin.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amidohydrolases / chemistry
  • Amidohydrolases / metabolism
  • Amino Acid Sequence
  • Anti-Bacterial Agents / chemistry
  • Anti-Bacterial Agents / metabolism
  • Anti-Bacterial Agents / pharmacology
  • Calcium / metabolism*
  • Catalytic Domain
  • Cell Wall / drug effects
  • Cell Wall / metabolism
  • Methicillin-Resistant Staphylococcus aureus / drug effects
  • Methicillin-Resistant Staphylococcus aureus / growth & development
  • Methicillin-Resistant Staphylococcus aureus / ultrastructure
  • Microbial Sensitivity Tests
  • Models, Molecular
  • Molecular Sequence Data
  • Mucoproteins / chemistry*
  • Mucoproteins / metabolism*
  • Mucoproteins / pharmacology
  • Protein Interaction Domains and Motifs*
  • Sequence Homology, Amino Acid
  • Staphylococcus Phages / enzymology*

Substances

  • Anti-Bacterial Agents
  • Mucoproteins
  • lysin, gastropoda
  • Amidohydrolases
  • Calcium

Grants and funding

This work was supported by the National Natural Science Foundation of China (Key Program, No. 31130072, http://www.nsfc.gov.cn), a Scholarship Award for Excellent Doctoral Student granted by the Ministry of Education, and the Excellent Doctoral Dissertation Nurture Subsidy Scheme granted by Jilin University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.