This study was designed to evaluate the prevalence of chromosomal abnormalities and to identify the specific abnormalities associated with poor prognosis. A total of 2,474 patients whose conventional cytogenetics were available at the time of diagnosis were evaluated via a nationwide registry. Normal metaphase cytogenetics was observed in 2,012 patients (81.3%). Among the 462 patients with chromosomal abnormalities, there were 161 (34.8%) patients with hyperdiploidy, 197 (42.6%) with pseudodiploidy, 79 (17.1%) with hypodiploidy, and 25 (5.5%) with near-tetraploidy. Deletion 13 (Δ13) in metaphase was observed in 167 patients (6.8%). Fluorescent in situ hybridization (FISH) was carried out in 967 patients (39.1%), and 66 (13.7%) out of 482 and 63 (10.3%) out of 611 patients were positive for t(4;14) and del(17p), respectively. With a median follow-up duration of 25.1 months, the median overall survival (OS) was 51.2 months (95% confidence interval, 46.5-55.9 months). In univariate analysis, the following four chromosomal abnormalities were significantly associated with a poor survival outcome: Δ13, hypodiploidy, del(13q) in FISH, and del(17p) in FISH. In the subsequent multivariate analysis, in which del(13q) and del(17p) in FISH were excluded due to a relatively low number of patients, Δ13 and hypodiploid status were independently associated with a poor survival outcome after adjusting for important clinical factors, including age, sex, performance, beta2-microglobulin, albumin, and lactate dehydrogenase (LDH). Using conventional metaphase cytogenetics, we confirmed that both Δ13 and hypodiploid status were robust poor prognostic factors. The metaphase karyotyping should remain the primary cytogenetic tool and an essential investigation for risk stratification in newly diagnosed multiple myeloma patients.