Duchenne muscular dystrophy (DMD) is a progressive muscle-wasting disease that causes respiratory and cardiac failure. Inflammation is a key pathological characteristic of dystrophic muscle lesion formation, but its role and regulation in the disease time course has not been sufficiently examined. In the present study, we used IL-10(-/-)/mdx mice lacking both dystrophin and the anti-inflammatory cytokine, interleukin-10 (IL-10), to investigate whether a predisposition to inflammation affects the severity of DMD with advancing age. The IL-10 deficiency caused a profound DMD phenotype in the dystrophic heart such as muscle degeneration and extensive myofiber loss, but the limb muscle and diaphragm morphology of IL-10(-/) (-)/mdx mice was similar to that of mdx mice. Extensive infiltrates of pro-inflammatory M1 macrophages in regeneration of cardiotoxin-injured muscle, altered M1/M2 macrophage phenotype and increased pro-inflammatory cytokines/chemokines production were observed in the diaphragm and heart of IL-10(-/-)/mdx mice. We characterized the IL-10(-/-)/mdx mice as a dystrophic model with chronic inflammation and severe cardiorespiratory dysfunction, as evidenced by decreased percent fractional shortening (%FS) and ejection fraction percent (EF%) on echocardiography, reduced lower tidal volume on whole-body plethysmography. This study suggests that a predisposition to inflammation is an important indicator of DMD disease progression. Therefore, the development of anti-inflammatory strategies may help in slowing down the cardiorespiratory dysfunction on DMD.
© The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.