The purpose of the present study was to elucidate whether premature senescence contributes to the outcome of radiotherapy (RT) and to validate senescence biomarkers in vitro and in vivo. Cultured human cancer cell lines and xenografted mice were exposed to single (SR; 2, 6 or 12 Gy) or fractionated radiation (FR; 3 x 2 Gy or 6 x 2 Gy), and premature senescence was assessed using senescence-associated β-galactosidase (SA-β-Gal) activity, hypophosphorylation of pRb and p21 accumulation. A variety of senescence-associated biomarkers including cathepsin D (CD), the eukaryotic translation elongation factors eEF1A1, eEF1B2, decoy receptor 2 and Dec1 were further validated in vivo or in vitro. We demonstrated the beneficial tumor suppressive role of ionizing radiation (IR)-induced premature senescence in vitro and in vivo. FR inhibited tumor growth via induction of premature senescence as effectively as an equivalent SR dose (≥6 Gy). In addition, CD and eEF1 were valuable biomarkers of cellular senescence in either SR- or RF-exposed carcinoma cells or xenograft mice. Our results suggest that 2 Gy of a conventional RT regime could achieve a better clinical outcome if premature senescence could be increased through an improved understanding of its molecular action mechanism.