The herpes simplex virus (HSV) tegument protein VP1-2 contains an N-terminal nuclear localization signal (NLS) that is critical for capsid routing to the nuclear pore. Here we analyzed positionally conserved determinants in VP1-2 homologues from each of the alpha, beta, and gamma classes of human herpesviruses. The overall architectures of the VP1-2s were similar, with a conserved N-terminal ubiquitin-specific protease domain separated from an internal region by a linker that was quite poorly conserved in length and sequence. Within this linker region all herpesviruses contained a conserved, highly basic motif which nevertheless exhibited distinct class-specific features. The motif in HSV functioned as a monopartite NLS, while in varicella-zoster virus (VZV) activity required an adjacent basic section defining the motif as a bipartite NLS. Neither the beta- nor gammaherpesvirus VP1-2 motifs were identified by prediction algorithms, but they nevertheless functioned as efficient NLS motifs both in heterologous transfer assays and in HSV VP1-2. Furthermore, though with different efficiencies and with the exception of human herpesvirus 8 (HHV-8), these chimeric variants rescued the replication defect of an HSV mutant lacking its NLS motif. We demonstrate that the lysine at position 428 of HSV is critical for replication, with a single alanine substitution being sufficient to abrogate NLS function and virus growth. We conclude that the basic motifs of each of the VP1-2 proteins are likely to confer a similar function in capsid entry in the homologous setting and that while there is flexibility in the exact type of motif employed, specific individual residues are critical for function.
Importance: To successfully infect cells, all herpesviruses, along with many other viruses, e.g., HIV, hepatitis B virus, and influenza virus, must navigate through the cytoplasmic environment and dock with nuclear pores for transport of their genomes into the nucleus. However, we still have a limited understanding of the detailed mechanisms involved. Insight into these events is needed and could offer opportunities for therapeutic intervention. This work investigated the role of a specific determinant in the structural protein VP1-2 in herpesvirus entry. We examined this determinant in representative VP1-2s from all herpesvirus subfamilies, demonstrated NLS function, dissected key residues, and showed functional relevance in rescuing replication of the mutant blocked in capsid navigation to the pore. The results are important and strongly support our conclusions of the generality that these motifs are crucial for entry of all herpesviruses. They also facilitate future analysis on selective host interactions and possible routes to disrupt function.