We demonstrate the performance of an efficient insertable pulse cleaning module (IPCM) that uses a saturable absorber (SA) pair with a compensating multi-pass amplifier. IPCM consists of a first SA, a grating compressor, a second SA, a stretcher and a compensating Ti:sapphire amplifier. It is implemented with a conventional chirped pulse amplification (CPA) Ti:sapphire laser system, resulting in a double CPA system architecture, and suppresses the amplified spontaneous emission (ASE) level of the pulse pedestal by about three orders of magnitude while preserving the output pulse energy and repetition-rate of the overall laser system. The duration of recompressed cleaned pulses is comparable to that obtained without the cleaning module. The effectiveness of the cleaning module is confirmed in laser-driven proton acceleration experiments. At the 10(9) W/cm2 pedestal level, the surface structure and electrical resistivity of an insulator target (100 nm silicon nitride) are preserved prior to the arrival of the intense ultrashort pulse.